


Libraries for
Generic Programming
in Haskell

Johan Jeuring
Utrecht University and Open University, NL

johanj@cs.uu.nl


johanj@cs.uu.nl

What is generic programming?

» Software development often consists of designing a
datatype, to which functionality is added.

» Some functionality is datatype specific, other functionality
is defined on almost all datatypes, and only depends on
the structure of the datatype.

» This is called datatype-generic functionality.
» Examples of datatype-generic functionality are:
» comparing two values for equality,
» searching a value of a datatype for occurrences of a
particular string or other value,
» editing a value,
» pretty-printing a value, etc.
Larger examples include XML tools, testing frameworks,
debuggers, and data-conversion tools.



Why Generic Programming?

Generic Programming is a programming technique that

» reduces code duplication
» reduces number of programming errors
» reduces software production time

» makes it easier to evolve programs



Why Generic Programming?

Generic Programming is a programming technique that

» reduces code duplication
» reduces number of programming errors
» reduces software production time

» makes it easier to evolve programs

So why isn’t everybody using generic programming?



Why not use generic programming

» generic programming tools are basically only available for
Haskell

» have to download, install and use external tools or libraries

» quite a number of tools are not supported anymore

» if you want to write your own generic function: steep
learning curve

» how do I choose between the remaining ten or so
approaches?



Why not use generic programming

» generic programming tools are basically only available for
Haskell

» have to download, install and use external tools or libraries
» quite a number of tools are not supported anymore

» if you want to write your own generic function: steep
learning curve

» how do I choose between the remaining ten or so
approaches?




Ultimate goal

We propose to design a common generic programming library for
Haskell, for which we will guarantee continuing support.

To ensure continuing support, we will develop this library in
an international committee.



Why a library?

» Haskell is powerful enough to support most generic
programming concepts by means of a library.

» Compared with a language extension (PolyP, Generic
Haskell), a library is much easier to ship, support, and
maintain.

» Compared with a preprocessing tool like DrIFT, or
Template Haskell, a library gives you much more support,
such as types.

Of course the library might be accompanied by tools.

The library should support the most common generic
programming scenarios.



This talk

Before we design a new library, we want to perform an
extensive evaluation of the existing libraries.

This talk

» briefly introduces one of the different libraries for generic
programming, by means of example

» discusses design criteria, and criteria for evaluating
generic programming libraries

» shows some interesting aspects of the evaluations we have
performed so far.



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)
» Scrap Your Boilerplate (SYB) (2003,2004,2005)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)
» Scrap Your Boilerplate (SYB) (2003,2004,2005)
» Polytypic Programming in Haskell (2003)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)
Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

v

v

v

v



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)
Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

v

v

v

v

v



Generic programming libraries in Haskell

>

Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)
Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)



Generic programming libraries in Haskell

>

Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)
Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)



Generic programming libraries in Haskell

>

v

vV vV.Vv Vv

Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

Strafunski (2002)

Scrap Your Boilerplate (SYB) (2003,2004,2005)
Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)

Smash your boilerplate (2006)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)

» Scrap Your Boilerplate (SYB) (2003,2004,2005)
» Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)

Smash your boilerplate (2006)

v

vV V. v v VY

Almost compositional functions (2006)



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)

» Scrap Your Boilerplate (SYB) (2003,2004,2005)
» Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)

Smash your boilerplate (2006)

v

Almost compositional functions (2006)

Extensible and Modular Generics for the Masses (EMGM)
(2006)

vV VvV vV Vv Y



Generic programming libraries in Haskell

» Lightweight Implementation of Generics and Dynamics
(LIGD) (2002)

» Strafunski (2002)

» Scrap Your Boilerplate (SYB) (2003,2004,2005)
» Polytypic Programming in Haskell (2003)
Generics for the Masses (2004)

SYB Reloaded, Revolutions (2006)

Generic programming, now! (2006)

RepLib (2006)

Smash your boilerplate (2006)

v

Almost compositional functions (2006)

Extensible and Modular Generics for the Masses (EMGM)
(2006)

» Uniplate (2007)

vV VvV vV Vv Y



High-level design decisions

There are many ways to categorize the different libraries, but
important high-level decisions are:

» Representations of types are passed explicitly to generic
functions: LIGD, Replib, Generic Programming, now!

» Use generic traversals and/or typecasts: Strafunski, SYB,
Uniplate.

» Use the class system to define generic functions: Generics
for the Masses.



Lightweight Generics and Dynamics

» Lightweight Implementation of Generics and Dynamics
(LIGD) is an approach to embedding generic functions and
dynamic values into Haskell 98 augmented with
existential types

» The basic idea of LIGD is to reflect the type argument onto
the value level so that the typecase can be implemented by
ordinary pattern matching.

» Developed by Cheney and Hinze.



Structure types

Types are reflected on the value level by means of structure
types. There are structure types for units, sums, and products.

data Unit = Unit
dataSumab =1Inla|Inrb
dataProdab=axb



Representing lists

data [a] =[] | a:[a]
rList :: Repa — Rep [a]
rList rtA = RType (rSum (RCon " [1" rUnit)

(RCon ":" (rPair rA (rList rA))))
(EP fromList toList)

data EPab = EP{from::a — b,to::b —a}

fromList :: [a] — Sum Unit (Prod a [a])
fromList [] = Inl Unit

fromList (x : xs) = Inr (x X xs)

toList :: Sum Unit (Prod a [a]) — [a]

toList ~ (Inl Unit) =[]
toList  (Inr (x X xs)) = x:xs




Representing types

LIGD uses a parametric type for type representations: Rep ¢ is
the type representation of ¢.

data Rep ¢t = RUnit

| Rint
| Va b.RSum (Rep a)
| Va b.RPair (Rep a)
|

(EP t Unit)
(EP t Int)
Rep b) (EP t (Suma b))
Rep D) (
Rep a) (
Rep t)

EP t (Prod a b))
Va. RType EP ta)

RCon String

Py



Constructing structure types

self 22 EPaa

self = EP{from = id, to = id }

rUnit :: Rep Unit

rUnit = RUnit self

rSum :: Repa — Rep b — Rep (Sum a b)
rSum rA rB = RSum rA rB self



Equality

Equality is the classic generic programming example.

equalString :: String — String — Bool
equalString [ [] = True
equalString []  _ = False
equalString _ = False

[]
equalString (c:s) (¢ :s') = c =’ A equalString s s

The algorithm is simple:

» Check whether two values are in the same alternative.
» If not, they are not equal.

» Otherwise, they are equal if all arguments are equal.



Equality on lists in LIGD

> geq (rList rInt) [1,2,3] [1,2,4]
False



Generic equality in LIGD

geq :: Rept — t — t — Bool

geq (RUnit ep) ty t, = case (fromep ty,fromep t) of
(Unit, Unit) — True

geq (RInt ep) ty ty = fromep t1 = fromep tp

geq (RSum rA rBep) t t; = case (fromep t,fromep t) of
(Inl ay,Inl ay) — geq rA aj ap
(Inr by, Inr by) — geq rB by by
_ — False

geq (RPair rA rB ep) t t, = case (from ep ty,fromep t) of
(ﬂl X bl,az X bz) —

geqrAay ay A geq rB by by
geq (RTyperAep )t tp = geq rA (fromep t1) (fromep tp)
geq (RCon s rA Yty =geqrAt tp




Evaluating the libraries

We evaluate existing libraries by means of a set of criteria.

Papers about generic programming usually give desirable
criteria for generic programs. Examples of such criteria are:

» can a generic function be extended with special behaviour
on a particular datatype,

» are generic functions first-class.

We develop a set of criteria based on our own ideas about
generic programming, and ideas from papers about generic
programming.

We have collected a set of generic functions for testing the
criteria. We try to implement all of these functions in the
different approaches.



The criteria: library design choices

» Extensionality versus intensionality. Is the selection of a
generic function case done at compile time (extensional
approach) or at runtime (intensional approach)?

LIGD, SYB: intensional, EMGM: ...

» Type representation. How are types represented at
runtime in intensional approaches? Are these
representations handled explicitly (as arguments that can
be pattern matched) or implicitly (as type class contexts)?
LIGD: explicit, SYB: implicit.

» Generic function encoding. How are generic functions
encoded? Are they Haskell functions or type class
methods?

LIGD, SYB: functions, EMGM!: type class methods.



The criteria: types

»

Full reflexivity. Different approaches allow different sets
of datatypes in the domain of generic functions.

EMGM and SYB do not allow higher-order kinded
datatypes.

Views. Does the library support more than one view?

All libraries have to be reimplemented completely to
support a new view. (SYB Revolutions can be viewed as a
Boilerplate view of LIGD.)

Type universes. Can you define a generic function on a
particular set of datatypes?

You would have to reimplement EMGM and LIGD. Don’t
know about SYB.

Intuition behind types. Are the types as you expect them?
EMGM, LIGD: yes. SYB: more or less.

Multiple type arguments. Can a function be generic in
more than one type argument?

EMGM, LIGD, SYB: yes.



The criteria: expressiveness I

>

First-class generic functions. Can a generic function take a
generic function as an argument?

Yes.

Generic functions of different arity. The equality function
can usually be defined in an approach to generic
programming, but a generalisation of the function map on
lists to arbitrary container types cannot be defined in all
proposals.

This is a problem for all library approaches.

Local redefinitions. Can the programmer provide a
custom function definition for the argument of a generic
function used on a type constructor?

After reimplementation.

Extensibility. Can the programmer extend the definition
of a generic function in a different module without the
need for recompilation?

LIGD, SYB: no. EMGM.: to some extent.



The criteria: expressiveness II

» Ad-hoc definitions for datatypes. Can a generic function
contain specific behaviour for a particular datatype, and let
the remaining datatypes be handled generically?

SYB, EMGM: yes. LIGD: no.

» Ad-hoc definitions for constructors. Can we give an
ad-hoc definition for a particular constructor, and let the
remaining constructors be handled generically?

SYB, EMGM: yes, LIGD: no.

» Properties of generic functions. Is the approach based on
a theory for generic functions?
LIGD, EMGM: yes, SYB: no.

» Consumers, transformers and producers. Is the approach
capable of defining consumer (@ — T), transformer (@ — a
ora — a') and producer (T — a) generic functions?

Yes.



The criteria: usability I

» Performance.

RepLib: 710;
PolyP: 1199;
EMGM: 1843;
LIGD: 2365;
Spine: 3364;
NOW: 3645;

SYB1_2: 7479;



The criteria: usability II

» Portability. LIGD, EMGM: portable (some rank-n
polymorphism). SYB: GHC.

» Amount of work per datatype. SYB: none, LIGD, EMGM:
structure types.

» Error messages. SYB: ..., LIGD, EMGM: OK.

» Practical aspects. SYB: well-developed, comes with GHC.
LIGD: dead? EMGM: no website.

» Ease of learning. LIGD: easy, EMGM: intermediate, SYB:
difficult.



Conclusions

» We are trying to design a common generic programming
library.

» For that purpose we have evaluated exisiting libraries for
generic programming in Haskell.

» I have introduced LIGD
» and criteria we would like an approach to satisfy.

» I've discussed some results of the evaluation.

More hopefully soon in a paper about our comparison!



But first: Hello World!




	

